Scanning and Sequential Decision Making for Multi-Dimensional Data - Part II: the Noisy Case

نویسندگان

  • Asaf Cohen
  • Tsachy Weissman
  • Neri Merhav
چکیده

We consider the problem of sequential decision making for random fields corrupted by noise. In this scenario, the decision maker observes a noisy version of the data, yet judged with respect to the clean data. In particular, we first consider the problem of scanning and sequentially filtering noisy random fields. In this case, the sequential filter is given the freedom to choose the path over which it traverses the random field (e.g., noisy image or video sequence), thus it is natural to ask what is the best achievable performance and how sensitive this performance is to the choice of the scan. We formally define the problem of scanning and filtering, derive a bound on the best achievable performance, and quantify the excess loss occurring when nonoptimal scanners are used, compared to optimal scanning and filtering. We then discuss the problem of scanning and prediction for noisy random fields. This setting is a natural model for applications such as restoration and coding of noisy images. We formally define the problem of scanning and prediction of a noisy multidimensional array and relate the optimal performance to the clean scandictability defined by Merhav and Weissman. Moreover, bounds on the excess loss due to suboptimal scans are derived, and a universal prediction algorithm is suggested. This paper is the second part of a two-part paper. The first paper dealt with scanning and sequential decision making on noiseless data arrays.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 1 Se p 20 06 Universal Scanning and Sequential Decision Making for Multi - Dimensional Data - Part I : the Noiseless Case ∗

We investigate the problem of scanning and prediction (“scandiction”, for short) of multidimensional data arrays. This problem arises in several aspects of image and video processing, such as predictive coding, for example, where an image is compressed by coding the error sequence resulting from scandicting it. Thus, it is natural to ask what is the optimal method to scan and predict a given im...

متن کامل

Scanning and Sequential Decision Making for Multi-Dimensional Data - Part I: the Noiseless Case

We investigate the problem of scanning and prediction (“scandiction”, for short) of multidimensional data arrays. This problem arises in several aspects of image and video processing, such as predictive coding, for example, where an image is compressed by coding the error sequence resulting from scandicting it. Thus, it is natural to ask what is the optimal method to scan and predict a given im...

متن کامل

Improvement of Methanol Synthesis Process by using a Novel Sorption-Enhanced Fluidized-bed Reactor, Part II: Multiobjective Optimization and Decision-making Method

In the first part (Part I) of this study, a novel fluidized bed reactor was modeled mathematically for methanol synthesis in the presence of in-situ water adsorbent named Sorption Enhanced Fluidized-bed Reactor (SE-FMR) is modeled, mathematically. Here, the non-dominated sorting genetic algorithm-II (NSGA-II) is applied for multi-objective optimization of this configuration. Inlet temperature o...

متن کامل

INTUITIONISTIC FUZZY DIMENSIONAL ANALYSIS FOR MULTI-CRITERIA DECISION MAKING

Dimensional analysis, for multi-criteria decision making, is a mathematical method that includes diverse heterogeneous criteria into a single dimensionless index. Dimensional Analysis, in its current definition, presents the drawback to manipulate fuzzy information commonly presented in a multi-criteria decision making problem. To overcome such limitation, we propose two dimensional analysis ba...

متن کامل

APPROXIMATE ALGORITHM FOR THE MULTI-DIMENSIONAL KNAPSACK PROBLEM BY USING MULTIPLE CRITERIA DECISION MAKING

In this paper, an interesting and easy method to solve the multi-dimensional  knapsack problem is presented. Although it belongs to the combinatorial optimization, but the proposed method belongs to the decision making field in mathematics. In order to, initially efficiency values for every item is calculated then items are ranked by using Multiple Criteria Decision Making (MCDA).  Finally, ite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2008